

Donders Institute
for Brain, Cognition and Behavior

Neurocomputational Approaches to Decision Making

Parameterized complexity theory: An indispensable tool for the cognitive (neuro)scientist

Johan Kwisthout
(joint work with Iris van Rooij, Todd Wareham, & Mark Blokpoel)

Radboud University Nijmegen

This lecture

- This lecture focuses on the **use** of **computational models** of (neuro-)cognitive phenomena for **explanatory** purposes
- What you will learn here is a **modeling technique** for **analysing** particular computational models and **constraining** the search space of possible models
- Many such constraints are relevant: biological plausibility, realistic assumptions, falsifiability, ...
- We focus on **computational tractability** as a model constraint based on theoretical computer science

Donders Institute

Radboud University Nijmegen

This lecture

- We will not focus on **particular** models of concrete neurocognitive phenomena related to decision making
- In contrast, I will discuss a technique that is relevant **for all** computational models of **all cognitive capacities**
- However, I will focus, without loss of generality, on **Bayesian cognitive models**, because:
 - Many models of decision-making sub-processes are in fact Bayesian models
 - We have mostly worked with such models and have the most interesting results of the technique I will describe

Donders Institute

Radboud University Nijmegen

Bayesian inference to the best explanation

- Inference to the best explanation ("trying to make sense of the phenomena we observe") is a key concept in many computational models of cognitive capacities / domains
 - Baker et al.'s models of Theory of Mind and Action Understanding
 - Van Rooij et al.'s models of Intention Recognition and Recipient Design
 - Yuille & Kersten's model of Visual Perception
 - Chater & Manning's models of Language Processing
- Yet, (Bayesian) inference to the best explanation is known to be a highly intractable problem in general
 - Bylander et al., 1991; Nordh & Zanuttini, 2005; Kwisthout, 2011
- Is this a problem for computational cognitive models that are based on Bayesian inference to the best explanation?

Donders Institute

Radboud University Nijmegen

Fokke en Sukke

"Very impressive, colleague, but does it also work in theory?"

Donders Institute

Radboud University Nijmegen

The Tractability Constraint

"The computations postulated by a model of cognition need to be tractable in the real world in which people live, not only in the small world of an experiment ... This eliminates NP-hard models that lead to computational explosion." (Gigerenzer et al., 2008)

Donders Institute

Radboud University Nijmegen

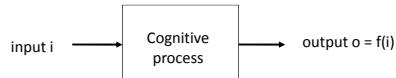
The Tractability Constraint

"The computations postulated by a **model of cognition** need to be tractable in the real world in which people live, not only in the small world of an experiment ... This eliminates NP-hard models that lead to computational explosion." (Gigerenzer et al., 2008)

Donders Institute
for Brain, Cognition and Behavior

Radboud University Nijmegen

Marr's three levels of explanation

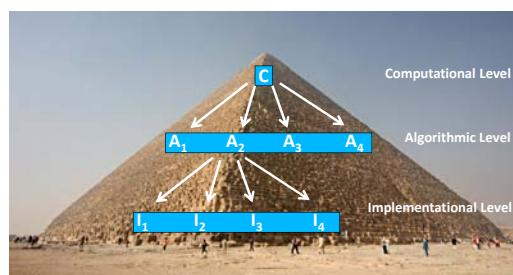


Level	Marr's levels	Question
1	Computational	What?
2	Algorithm	Method?
3	Implementation	Implementation?

Donders Institute
for Brain, Cognition and Behavior

Radboud University Nijmegen

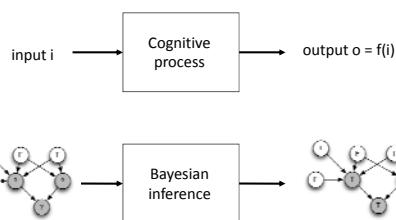
A pyramid of explanations



http://en.wikipedia.org/wiki/Great_Pyramid_of_Giza

Radboud University Nijmegen

Computational-level Models of Cognition



Donders Institute
for Brain, Cognition and Behavior

Radboud University Nijmegen

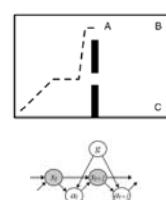
The Tractability Constraint

"The computations postulated by a model of cognition need to be tractable **in the real world in which people live, not only in the small world of an experiment** ... This eliminates NP-hard models that lead to computational explosion." (Gigerenzer et al., 2008)

Donders Institute
for Brain, Cognition and Behavior

Radboud University Nijmegen

Scalability



Does this scale to, e.g., recognizing intentions in a job interview?

Baker, C.L., Tenenbaum J.B., & Saxe, R.R. (2007)
Goal Inference as Inverse Planning, CogSci'07

Donders Institute
for Brain, Cognition and Behavior

Radboud University Nijmegen

The Tractability Constraint

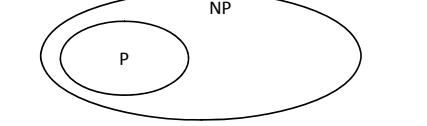
"The computations postulated by a model of cognition **need to be tractable** in the real world in which people live, not only in the small world of an experiment ... **This eliminates NP-hard models** that lead to computational explosion." (Gigerenzer et al., 2008)

Donders Institute
for Brain, Cognition and Behavior

Radboud University Nijmegen

What are P, NP and NP-hard?

All problems

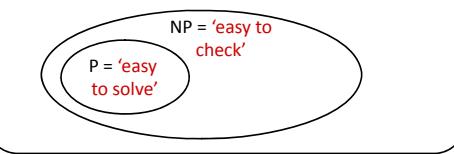


Donders Institute
for Brain, Cognition and Behavior

Radboud University Nijmegen

What are P, NP and NP-hard?

All problems

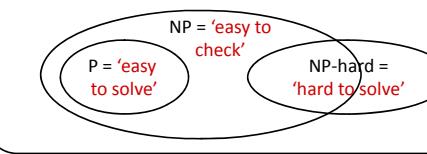


Donders Institute
for Brain, Cognition and Behavior

Radboud University Nijmegen

What are P, NP and NP-hard?

All problems



Donders Institute
for Brain, Cognition and Behavior

Radboud University Nijmegen

Intuitive example: hard to solve & easy to check

Sudoku

5	2		7	1	2	9	3
		9					
8					9	4	
1		5	9			8	
9	5				7		
			3				
		1	9	3		8	
6	1	2	8	5			

8	4	6	7	1	2	9	5	3
5	9	2	6	3	8	1	4	7
1	7	3	9	5	4	8	2	6
2	6	8	3	7	1	5	9	4
3	1	7	5	4	9	6	8	2
9	5	4	8	2	6	7	3	1
7	8	9	4	6	3	2	1	5
4	2	5	1	9	7	3	6	8
6	3	1	2	8	5	4	7	9

Donders Institute
for Brain, Cognition and Behavior

Radboud University Nijmegen

Why NP-hard is considered intractable

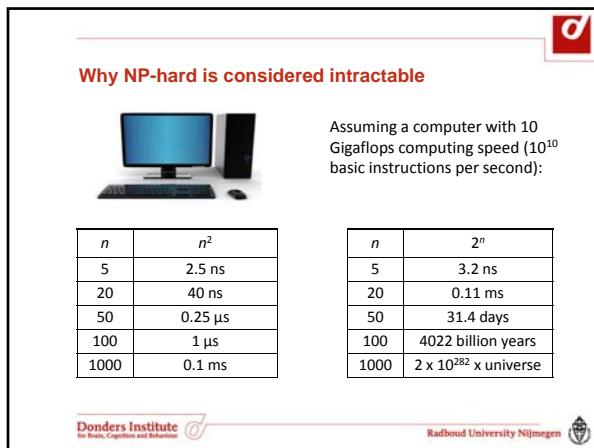
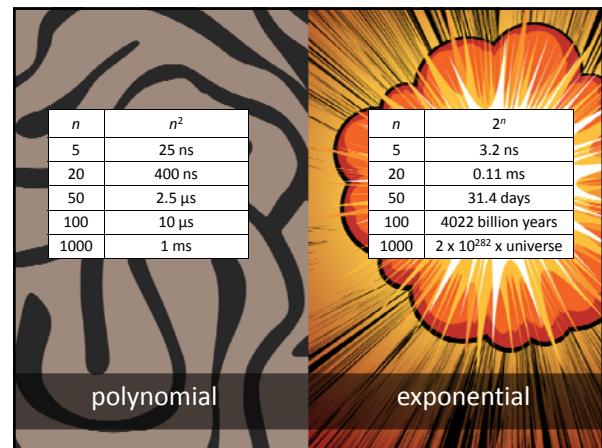
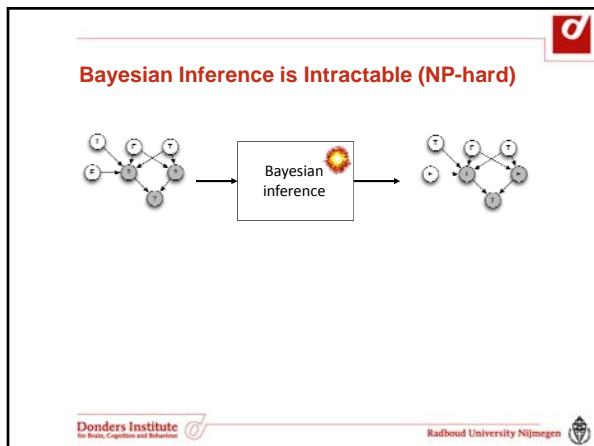
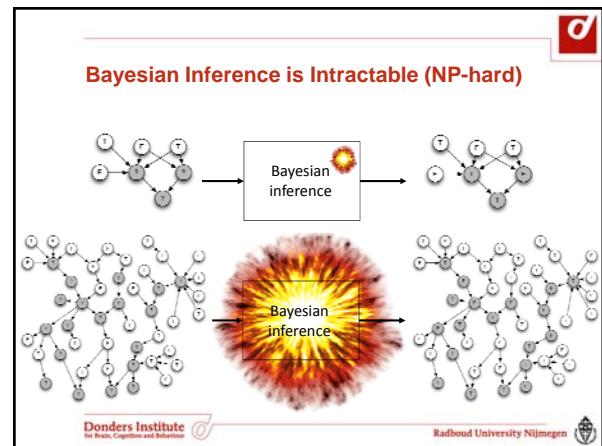
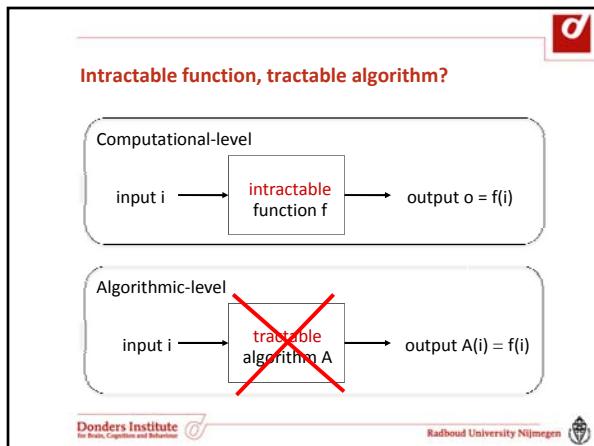
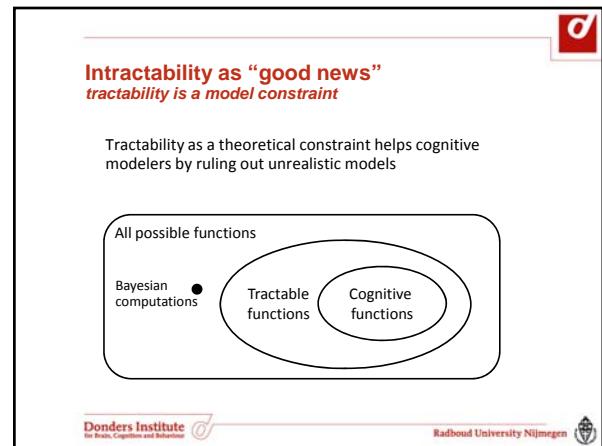
NP-hard functions cannot be computed in polynomial time (assuming $P \neq NP$). Instead they require exponential time (or worse) for their computation, which is why they are considered intractable (in other words, unrealistic to compute for all but small inputs).

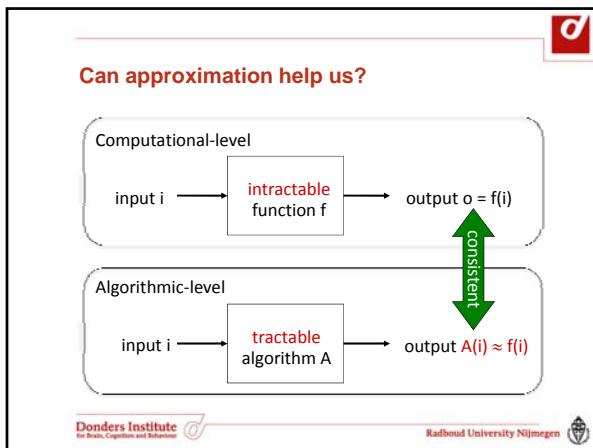
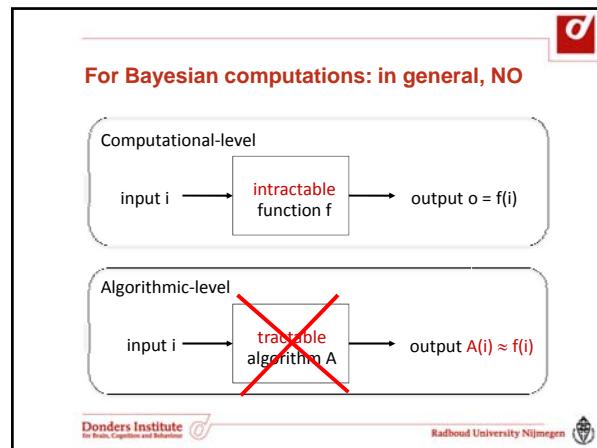
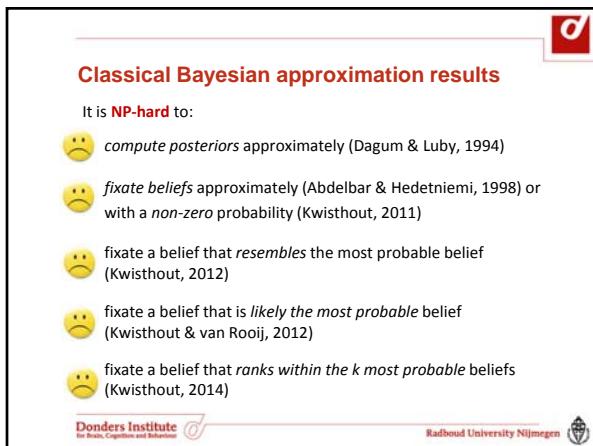
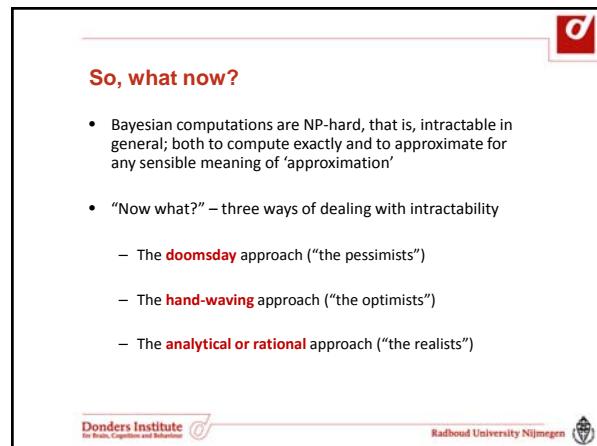
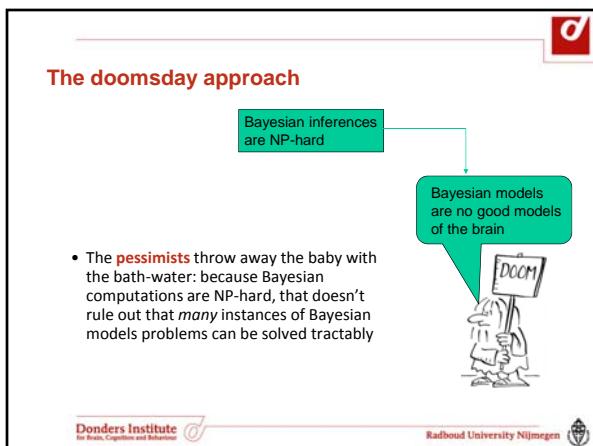
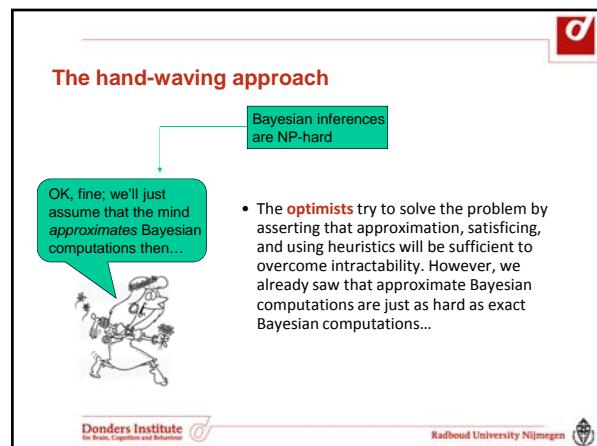
n	n^2
5	25
20	400
50	2500
100	10000
1000	10^6

n	2^n
5	32
20	1.05^6
50	1.13×10^{15}
100	1.27×10^{30}
1000	1.07×10^{301}

Donders Institute
for Brain, Cognition and Behavior

Radboud University Nijmegen





The analytical approach

- The **realists** see the strength of Bayesian models but acknowledge that they are too broad and need to be constrained in order to overcome intractability. They will look for **problem parameters** that – when bounded – render the problem tractable

Donders Institute for Brain, Cognition and Behavior Radboud University Nijmegen

Intractability as “good news”

tractability is a model constraint

Constraining computational models may help to buy tractability – and even cognitive plausibility

Donders Institute for Brain, Cognition and Behavior Radboud University Nijmegen

How to constrain Bayesian inferences?

Step 1. Identify **parameters** of the model that can be proven to be sources of intractability

- In general, NP-hard problems take exponential time **in the worst case** to solve → some instances are easy, some are hard
- Identify what makes these instances hard (or easy)

Donders Institute for Brain, Cognition and Behavior Radboud University Nijmegen

How to constrain Bayesian inferences?

Step 1. Identify **parameters** of the model that can be proven to be sources of intractability

$$\exp(n) \Rightarrow \exp(k_1, k_2, \dots, k_m) \text{poly}(n)$$

For example, k_1 : max out degree
 k_2 : max # unknowns
 k_3 : etc.

Donders Institute for Brain, Cognition and Behavior Radboud University Nijmegen

How to constrain Bayesian inferences?

Step 1. Identify **parameters** of the model that can be proven to be sources of intractability

$$\exp(n) \Rightarrow \exp(k_1, k_2, \dots, k_m) \text{poly}(n)$$

Step 2. Constrain the model to **small** values for the parameters k_1, k_2, \dots, k_m . (Note: n can still be large!)

Step 3. Verify that the constraints hold for humans in **real-life** situations, and **test in the lab** if performance breaks down when parameters are large

Donders Institute for Brain, Cognition and Behavior Radboud University Nijmegen

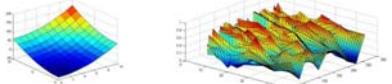
What makes Bayesian inferences tractable?

Exact inferences	Approximate inferences
✗ degree of network?	✗ degree of network?
✗ cardinality of variables?	✗ cardinality of variables?
✗ length of paths/chains?	✗ length of paths/chains?
✓ structure of dependences?	✓ structure of dependences?
✗/✓ posterior probability?	✗/✓ posterior probability?
✓ characteristics of the probability distribution?	

Donders Institute for Brain, Cognition and Behavior Radboud University Nijmegen

CPDs and approximate inference

- Local search techniques, MC sampling, etc., are dependent on the landscape of the probability distribution



- For some Bayesian inference problems, this landscape can be parameterized – we can prove bounds on the success of the approximation algorithm relative to this parameter
- Kwisthout & Van Rooij (2013), Bridging the gap between theory and practice of approximate Bayesian inference. *Cognitive Systems Research*, 24, 2–8.
- Kwisthout (2015), Tree-Width and the Computational Complexity of MAP Approximations. *Journal of AI Research*, in press.

Donders Institute **Radboud University Nijmegen**

Our version of the Tractability Constraint

“The computations postulated by a model of cognition need to be tractable in the real world in which people live, not only in the small world of an experiment ... This eliminates NP-hard models that lead to computational explosion.” (Gigerenzer et al., 2008)

This poses the need for a **thorough analysis** of the sources of complexity underlying NP-hard models, and **eliminates NP-hard models** expect those that can be proven to be **fixed-parameter tractable** for parameters that may safely be assumed to be small in the real world.

Donders Institute **Radboud University Nijmegen**

